

CELLULAR V2X DEVICE-TO-DEVICE COMMUNICATION CONSORTIUM

C-V2X Performance Assessment Project

Task 8: Assessment of Wi-Fi Interference to C-V2X Communication Based on Proposed FCC 5.9 GHz NPRM

Interference Field Testing Results 9/28/2020

List of Acronyms

Abbreviation	Explanation	Abbreviation	Explanation	
SEM	Spectral Emissions Mask	HP VA	High Power Variable Attenuator	
OOBE	Out of Band Emissions	RMS	Root Mean Square	
C-V2X	Cellular Vehicle to Everything	MCS	Modulation and Coding Scheme	
U-NII-4	Unlicensed National Information Infrastructure (U-NII) radio band (5850 MHz -5895 MHz) proposed by the FCC NPRM	HARQ	Hybrid Automatic Repeat Request	
ITS	Intelligent Transportation Systems	NPRM	Notice of Proposed Rule Making	
3GPP	3G Partnership Project	LOS/NLOS	Line of Sight/Non-Line of Sight	
VA	Variable Attenuator	V2X	Vehicle to Everything (X) where X can be Vehicle (V), Infrastructure (I) or Network (N)	
тх	Transmitter	EIRP	Effective Isotropic Radiated Power	
RX	Receiver	FCC	Federal Communications Commission	
ACP	Average Carrier Power	PER	Packet Error Rate	
CCDF	Complementary Cumulative Distribution Function	DNPW	Do Not Pass Warning	
WFA	Wi-Fi Alliance	EEBL	Emergency Electronic Brake Light	
AP	Access Point			

Executive Summary

- Wi-Fi Alliance proposed U-NII-4 OOBE limits for outdoor devices in their March, 2020 Comments to the 5.9 GHz NPRM
- CAMP C-V2X Consortium has field tested this proposal assuming an in-vehicle U-NII-4 interferer
 - Three (3) use cases with NLOS propagation conditions assumed
- Significant harmful interference to V2V and I2V safety communication was measured for all cases
- For this reason CAMP C-V2X Consortium strongly believes that the devices adhering to this OOBE mask should be:
 - Restricted to indoor only Wi-Fi Access Points (APs)
 - Prohibited to operate as portable Wi-Fi APs (that could be used invehicle)
- NOTE: Other proposals for OOBE limits of unlicensed devices are less stringent than used in this evaluation and, based on the results presented here, will cause additional harmful interference

Task 8: Technical Scope

- Evaluate the interference from Wi-Fi operations in the U-NII-4 band to C-V2X (3GPP Rel-14, mode 4) safety communications on Channel 180 and Channel 183 based on proposed rules in the January 2020 FCC 5.9GHz NPRM
- Period of Performance: February 01, 2020 September 30, 2020

CH 180 : 5895 MHz – 5905 MHz CH 183 : 5905 MHz – 5925 MHz U-NII-4 (proposed) : 5850 MHz – 5895 MHz

Objective Test Description

Aimed at understanding Wi-Fi interference to C-V2X system performance in CH 180 and CH 183 under these system factors:

- C-V2X Device Configurations
 - Channel bandwidth 10 MHz (CH 180) and 20 MHz (CH 183)
 - Payload size
 - 365 byte, supporting V2V messages

Implemented as per SAE J3161

- 1400 byte, supporting I2V messages
- Wi-Fi Alliance OOBE March Proposal in the FCC 5.9 GHz NPRM Docket^[1]
- Wi-Fi Configurations
 - In-vehicle hotspot
 - Primary focus: 80 MHz (CH 171) Bandwidth Wi-Fi 802.11ac signal

[1] https://www.fcc.gov/ecfs/filing/1030974615271

Wi-Fi Alliance U-NII-4 OOBE Proposal

- Wi-Fi Alliance OOBE mask definition ^[1]
 - Linearly drawn to match peak power limit of
 - -5 dBm/MHz at 5895 MHz
 - −27 dBm/MHz >= 5925 MHz
 - Expressed in terms of EIRP
 - Applies outdoors

Note: A proposals in [2] for indoor-only usage OOBE limits would include building losses, offering additional protection to CH180 & CH183 transmissions.

[1] https://ecfsapi.fcc.gov/file/1030974615271

[2] https://ecfsapi.fcc.gov/file/10309096401111/5GAA%20Comments%20(3-9-2020).pdf

Test Setup

Test Scenarios

Scenario	Link Test
Non-line of Sight (NLOS)	V2V, I2V
NLOS Intersection	V2V

Test Configurations

Config Item	Values
Payload	365 Byte (V2V) 1400 Byte (I2V)
Antenna Diversity	2 Rx
HARQ	ON
C-V2X Channels	180, 183
Transmit Power	17dBm (at the antenna input) Note: Device configured for 20 dB Tx power with additional ~3dB cable loss and ~0dB antenna gain at Horizon
Inter-Transmit Time	100 ms
Wi-Fi AP	In-vehicle
Wi-Fi Antenna Gain	6 dBi
Wi-Fi Channel	171
C-V2X Antenna Conf	Roof-mounted Side-view Mirror

Interference Equipment

Device	Model
Signal Generator	Rohde & Schwarz Model: SMBV100A
Bi-Directional Amplifier	Triad TTRM4302-D04
Signal Analyzer	Keysight or Agilent Model: N9020A

Others

ltem	Value
Moving Vehicle Speed	25 MPH
Runtime / Test	6 Loops
Blocker Vehicle	26 ft truck

OBE-vehicle Mapping

OBE ID	Vehicle/ RSU
21	Nissan Pathfinder (OBE#31 used for 2 tests)
42	Nissan Rogue (OBE#32 used for 2 tests)
105	RSU w/ ECO6-5900-RN (6 dBi gain Antenna @ 18 ft)

Wi-Fi and C-V2X Channels Used

Frequency (MHz)

Generated 802.11ac Waveform, CH 171 (80 MHz) – Wi-Fi Alliance Proposal Mask | In-vehicle Hotspot

- Spectral Emission Mask (SEM): used to confirm that the Out of Band Emissions (OOBE) of the generated waveform is met
- Average Carrier Power (ACP): used to measure the level of OOBE in the adjacent channel
- Antenna Gain (6 dBi) and cable loss (3.1 dB) of the interferer setup included as offsets in measurements and accounted for

Key Settings: Res BW: 1 MHz, Max Hold, Peak Detector

Interferer Setup

In-vehicle Hotspot Setup

- Wi-Fi Interference Source Signal Generator with Generated 802.11ac waveform
- Duty cycle was set at 60%
- 80 MHz (CH 171) waveform complied with the Wi-Fi Alliance proposal mask
- The Wi-Fi antenna was placed on the front passenger seat
- This placement approximates a passenger holding a mobile device

Interference Duty Cycle Comparison to Sniffed Wi-Fi Activity

- The duty cycle of the Wi-Fi signal in the field tests was set at 60% which is not the worst case
- In the peer-to-peer direct file transfer test reported in [3] the average duty cycle was above 75% measured over 100 ms periods
- Duty cycle measurement over periods that last minutes, as reported in other studies, does not provide accurate information to assess harmful interference in collision scenarios

[3] <u>https://ecfsapi.fcc.gov/file/1042725827205/Ford%20Motor%20Company%205.9%20GHz%20FCC%20Reply%20Comments%2</u> 0as%20Filed%204-27-20.pdf

Wi-Fi Antenna Pattern (ECO6-5900)

[4] <u>https://www.mobilemark.com/wp-admin/admin-</u> ajax.php?juwpfisadmin=false&action=wpfd&task=file.download&wpfd_category_id=2014&wpfd_file_id=6589&token=13fbaaa1df6f6e0b3daa4b4fcf9d31e7&preview=1

CAMP – C-V2X Consortium Proprietary

Vehicle Radiated RF Power

Radiated Power = Antenna Gain + Tx Power (unit) – Cable Loss Tx Power (unit) = 20 dBm Cable Loss (LMR 200, 3 meters) = \sim 3 dB Antenna gain (horizon) = \sim 0 dBi Radiated Power = \sim 17 dBm

Radiation Pattern @ 5.85 GHz, 5.90 GHz, 5.95 GHz

CAMP – C-V2X Consortium Proprietary

V2V Non-line of Sight (NLOS)

Test Setup: V2V NLOS

Primary Rx (Stationary) \rightarrow 21 [Nissan Pathfinder] Primary Tx (Moving) \rightarrow 42 [Nissan Rogue]

In-vehicle Hotspot

Roof-mounted C-V2X Antenna Setup

• The isolation between the in-vehicle hotspot and the primary and secondary V2X antennas was measured at 56 dB and 64 dB, respectively

V2V NLOS (Roof-mounted C-V2X Antenna) Stationary Vehicle Receiving

CH 180 CH 183 Packet Error Ratio (PER): Approaching Packet Error Ratio (PER): Approaching V2V NLOS | Rx-21 | Tx-42 V2V NLOS | Rx-21 | Tx-42 100 100 - CH180/Baseline CH183/Baseline 90 90 CH180/In-Vehicle/WFA CH183/In-Vehicle/WFA 80 80 70 70 Approaching Approaching 60 60 PER (%) PER (%) 50 50 40 40 30 30 20 20 10 10 0 0 100 0 0 ŝ \$ 00 ,so °o⁰ 15⁰ °°, 150 2º ~5⁰ ° Tx-Rx Distance (m); Bin Size =10m Tx-Rx Distance (m); Bin Size =10m Packet Error Ratio (PER): Separating Packet Error Ratio (PER): Separating V2V NLOS | Rx-21 | Tx-42 V2V NLOS | Rx-21 | Tx-42 100 100 CH180/Baseline - CH183/Baseline 90 90 CH180/In-Vehicle/WFA CH183/In-Vehicle/WFA 80 80 70 70 60 60 PER (%) PER (%) 50 50 Separating Separating 40 40 30 30 20 20 10 10 0 0 300 ,00 150 300 0 3 250 0 ŝ 250 00 <u>,</u>69 200 P Tx-Rx Distance (m); Bin Size =10m Tx-Rx Distance (m); Bin Size =10m

09/28/2020

CAMP – C-V2X Consortium Proprietary

Impact on Safety Applications in CH 183

Test	Safety App	Warning Distance (10% PER) (m) w/o and w/ Wi-Fi	No Wi-Fi Maximum Safe Relative Speed (mph)	Wi-Fi Active Maximum Safe Relative Speed (mph)
V2V NLOS (approaching)	DNPW	160/110	45	31
V2V NLOS (separating)	EEBL	160/80	68	45

- Vehicles emulate Do Not Pass Warning (DNPW) Scenario while approaching and emulating the Electronic Emergency Brake Light (EEBL) Scenario while separating
- DNPW: Assuming 8 second margin between safe cross-over between north-bound and south-bound vehicles
- EEBL: Truck suddenly changes lane late and with 1.5s driver reaction, rear vehicle decelerates at 4 ms⁻² just before vehicle in the front that is assumed stopped
- In both cases, the presence of Wi-Fi interference causes reduction in safe relative speed

I2V Non-line of Sight (NLOS)

Test Setup: I2V NLOS

I2V NLOS (Roof-mounted C-V2X Antenna) Moving Vehicle Receiving From RSU

CAMP – C-V2X Consortium Proprietary

V2V NLOS Intersection

Test Setup: V2V NLOS Intersection

V2V NLOS Intersection (Roof-mounted C-V2X Antenna) Stationary Vehicle Receiving

CH 180

CH 183

09/28/2020

CAMP – C-V2X Consortium Proprietary

Testing Summary – In-vehicle Hotspot (Roof-mounted C-V2X Antenna)

Communication Range (@ PER < 10%)								
	Approaching			Separating				
TEST SCENARIOS	CH 180		CH 183		CH 180		CH 183	
	No Wi-Fi	ln- vehicle Hotspot	No Wi-Fi	In- vehicle Hotspot	No Wi-Fi	ln- vehicle Hotspot	No Wi-Fi	ln- vehicle Hotspot
V2V NLOS	160 m	50 m	160 m	100 m	180 m	40 m	170 m	90 m
I2V NLOS	440 m	70 m	520 m	150 m	600 m	110 m	530 m	220 m
V2V NLOS Intersection	420 m	40 m	610 m	110 m	380 m	50 m	590 m	190 m

- Significant communication range degradation in the presence of U-NII-4 Wi-Fi in-vehicle Hotspot
- Both CH 180 and CH 183 are impacted, with higher harmful impact on CH 180

Side-mirror C-V2X Antenna Setup

- Side-mirror C-V2X antennas were placed only on the stationary vehicle
 - Moving vehicle still had roof-mounted C-V2X antennas
- The isolation between the in-vehicle hotspot and the primary and secondary V2X antennas was measured at 52 dB and 60 dB, respectively

Test Setup: V2V NLOS

Primary Rx (Stationary) \rightarrow 21 [Nissan Pathfinder] Primary Tx (Moving) \rightarrow 42 [Nissan Rogue]

In-vehicle Hotspot

28

V2V NLOS (Side-mirror C-V2X Antenna) Stationary Vehicle Receiving CH 183

Testing Summary – In-vehicle Hotspot (Side-mirror C-V2X Antenna)

Communication Range (@ PER < 10%)					
A	oproaching	Separating			
No Wi-Fi	In-vehicle Hotspot	No Wi-Fi	In-vehicle Hotspot		
390 m	100 m	400 m	70 m		

- Side-mirror C-V2X antenna configuration is tested in V2V NLOS Scenario with the same placement of the in-vehicle Wi-Fi antenna as in the previous tests
 - Only CH 183 was tested
- Significant communication range degradation in the presence of In-vehicle Hotspot U-NII-4 Wi-Fi operation
- With less spectral separation, interference to CH180 is expected to be greater than observed in CH183

Conclusions

- Field tests of three (3) V2X safety use cases have clearly shown harmful interference when U-NII-4 Wi-Fi devices operate in-vehicle
- Depending on the choice and positioning of the Wi-Fi antenna in-vehicle the interference to C-V2X can be even higher
- For that reason, additional protection of V2X safety applications is required

Backup

C-V2X Device Parameters

	20 MHz	(CH 183)	10 MHz	(CH 180)
Packet Size	MCS	Num Sub Channels	MCS	Num Sub Channels
365	11	2	11	2
1400	7	10	7	5

Sub-Channel Size = 10 Resource Blocks (RB) HARQ Enabled