Operational Experiences Proving Mass Flow Meters with Small Volume Provers

Presented at: Energy Week Conference and Exhibition February 1, 1996

Written by: Stephen K. Whitman

COASTAL FLOW MEASUREMENT, INC., P.O. Box 58965 Houston, Texas 77258 Ph. (713) 477-1956, FAX (713) 475-9643, Toll Free (800) 231-9741, E-mail: coastalflo@aol.com

Operational Experiences Proving Mass Flow Meters with Small Volume Provers

Introduction

Small Volume Provers were introduced several decades ago, and numerous papers have been presented covering the technical and empirical operation of these provers. During this time, mass flow meters based upon the Coriolis effect have evolved. The measurement accuracy of these meters has continually improved to the degree that the Hydrocarbon Industry is closely evaluating them for custody transfer measurement.

Flow meters used in custody transfer measurement normally require some means of verification, which is generally referred to as "meter proving." Meter proving methods for traditional volumetric meters are well established, while those for mass flow meters are still evolving.

Coriolis mass flow meters are fundamentally different from traditional custody transfer meters. Therefore, a basic understanding of the principles of operation is necessary to properly prove mass flow meters.

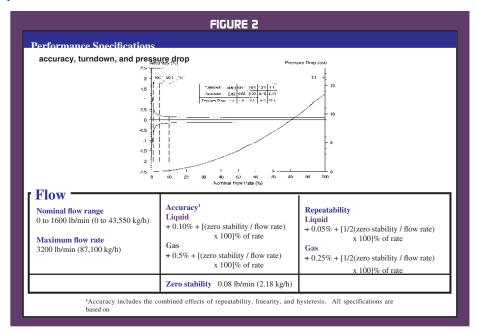
This paper will focus on the basic knowledge needed to prove mass meters, with actual case histories to demonstrate operational experiences with small volume provers.

Understanding the Coriolis Meter

A Coriolis meter is different from other meters in that it requires two primary components: the sensor (the pipe tube in which the fluid flows) and the transmitter (the electronics which processes sensor outputs) to provide the flow and density outputs. The transmitter is typically programmable with at least the calibration information specific to the sensor and the desired signal output range.

The pulse output from most meters is commonly referred to as a K-factor. The K-factor for a Coriolis meter does not define its calibration, as it does with other meters, and should not be used to adjust for any errors. Coriolis meter K-factors are typically scalable and are based upon the time conversion of the flow rate output. They are usually in multiples of ten (e.g., 10, 100, 1000) or six (e.g., 6, 60, 600, 6000) and are not expressed as a K-factor, but as a frequency/flow rate setting (e.g., 100 Hz = 100 lb/min). The

FIGURE I								
K-Factor Scaling		K-Factor Scaling						
<u>Prover Data</u> Volume: 20.04270 gal	Temperature (°F): 96.8 Pressure (psig): 25.53	Prover DataTemperature (°F): 96.8Volume:20.04270 galPressure (psig):25.53						
Meter Data Base K: 6.00 P/lb	Size: 3" Temperature (°F): 96.8 Pressure (psig): 25.53	Meter DataSize: 3"Base K:60.0 P/lbTemperature (°F): 96.8Pressure (psig):25.53						
Frequency Setpoint: 750 Hz Flowrate Setpoint: 7500 lb/min.		Frequency Setpoint: 7500 Hz Flowrate Setpoint: 7500 lb/min.						
Prover Mass Meter Mass Meter Factor	Flow Rate Meter Meter Net K lb/min Fequency Hz P/lb	Prover Mass Meter Mass Meter Factor Flow Rate Meter Meter Net K lb/min Fequency Hz P/lb						
166.30703 167.60882 0.99223 166.30497 167.63564 0.99206 166.30286 167.55110 0.99225 166.30047 167.59063 0.99230 166.29887 167.63279 0.99204	972.546 98.018 6.05 973.876 98.169 6.05 973.913 98.124 6.05 974.179 98.176 6.05 975.901 98.375 6.05	166.34738167.622440.99239975.288982.78760.46166.34444167.612180.99244974.264981.71360.46166.34291167.672810.99207975.721983.54660.48166.34123167.611020.99242974.873982.33960.46166.33771167.664700.99209974.856982.65760.48						
Average: 166.30284 167.60380 0.99224	974.083 98.173 6.05	Average: 0.99228 975.000 982.609 60.47						
Repeatability: 0.05140%	Average number of pulses 1,005.62	Repeatability: 0.03729% Average number of pulses 10,058.2						


ability to scale a K-factor without changing the meter calibration is demonstrated in Figure 1.

A Coriolis meter also has the unique ability to determine density independently of mass flow. The complete calibration of the meter is defined by, and typically expressed as, the density and flow calibration factors. Adjustments for errors in a meter's calibration should be made to the respective measurement factor that is incorrect.

Proving Expectations

Due to the Coriolis meter's unique characteristics and capabilities, there is a significant amount of misunderstanding in what to expect from this instrument when trying to "prove it" to current standards. This has been due, in part, to the lack of information and guidance available, especially from the meter manufacturers.

A specification sheet will provide more details on a meter's capabilities. They do vary, depending upon the manufacturer, model, and pressure rating. Figure 2 is an example of a new, more informative specification sheet expressing the meter's accuracy, based upon its flow rate and/or turndown. Additional information of this kind on different models of meters would be extremely useful.

One of the first problems usually encountered is that the meter has been installed in an application in which no other type of meter could be proved. This is normally due to one of several conditions, such as widely varying flow, changing density, product flowing at or near equilibrium pressure, or pulsation occurring at the measurement station. These conditions should be avoided, because the quality of the proving results from Coriolis meters is dependent upon flow conditions which are consistent with accepted practices.

Another feature unique to these meters, and one that directly affects proving results, is called the "meter zero." Attaining a proper zero procedure can be difficult because most installations have not made provisions for it. To zero a meter, it must be completely full of the operating fluid, which is free of any entrained gases, and there must be no flow. To repeat, there can be absolutely no flow through the meter for a proper zero. A zero is typically achieved by pushing a button on the transmitter. Variations in the meter zero are the result of changes in pipe stress, temperature, external vibrations and improper zeroing.

So can acceptable results be obtained? Yes, they can, with optimum pipe and flow conditions, and correct meter zeroing, as illustrated in Figures 3 and 4. These illustrations are not meter provings, but rather they are calibrations at 20, 40, 60, 80, & 100% of the meter output range, on the same meter, performed four months apart. The quality of these results is impressive, but not necessarily consistent with the majority of meters we have calibrated. Although there are many meters that perform comparably, further research and development is needed to bring the performance of all Coriolis meters to this level.

FIGURES 3 & 4								
Figure 3		Figure 4						
<u>Prover Data</u> Volume: 0.05070 bbl	Temperature (°F): 67.2 Pressure (psig): 27.04	Prover Data Volume: 2.12944 gal	Temperature (°F): 94.3 Pressure (psig): 31.61					
Meter Data Base K: 600.00 P/lb	Size: 1" Temperature (°F): 67.2 Pressure (psig): 27.04	Meter Data Base K: 600.00 P/lb	Size: 1" Temperature (°F): 94.3 Pressure (psig): 31.61					
Frequency Setpoint: 2000 Hz Flowrate Setpoint: 200 lb/min.		Frequency Setpoint: 2000 Hz Flowrate Setpoint: 200 lb/min.						
Prover Mass Meter Mass Meter Factor	Flow Rate Meter Meter Net K lb/min Fequency Hz P/lb	Prover Mass Meter Mass Meter Factor F	Now Rate Meter Meter Net K Ib/min Fequency Hz P/Ib					
17.74373 17.74154 1.00012 17.74346 17.73774 1.00032 17.74347 17.74517 0.99990 17.74351 17.74198 1.00008 17.74308 17.73800 1.00029	197.402 1973.81200 599.93 152.299 1522.52550 599.81 130.141 1301.56325 600.06 84.724 847.1948 599.95 46.029 460.16827 599.83	53.04014 53.02197 1.00034	41.214 412.138 599.98 83.314 832.802 599.75 117.914 1178.763 599.79 156.995 1569.451 599.79 199.912 1998.964 599.94					
Average: 17.74342 17.74089 1.00014	122.119 1221.053 599.92	Average: 53.04458 53.03130 1.00025	118.870 1198.424 599.85					
Repeatability: 0.04199% Average Error %: -0.01 Repeatability: 0.03799% Average Error %: -0.02								

Small Volume Provers

Small volume provers are probably the most practical and acceptable type of proving devices available. The gravimetric method of proving Coriolis meters is not practical in pipeline applications, and commonly lacks the accuracy required for high flow rate applications. Sophisticated computer based electronics, which are more commonly used on small volume provers, give them an advantage over conventional ball provers. They also have a greater range of fluid compatibility, and reduced fluid disposal quantities, which minimizes the potential for environmental problems.

Recent publications on proving Coriolis meters with small volume provers suggest that these provers have trouble with pass-to-pass repeatability. They recommend pass averaging (i.e., ten to fifteen passes averaged into one run) to compensate for repeatability problems. To date, we've found that achieving repeatability has not been a problem and there has been no need to average a large number of passes. A typical single-pass proving is illustrated in Figures 1 and 3, and a three-pass average in Figure 4. Obtaining repeatability in proving Coriolis meters can be more complicated than in proving other meters. Problems associated with achieving repeatability should not be obscured by averaging large amounts of data, but rather identified and eliminated.

Case Histories

The three case histories presented are of provings using a small volume prover in actual pipeline applications. Case History I demonstrates that, with the correct methods and equipment, good results can be achieved even in an extreme application. Case History II involves a routine application using a prover of a different size than the first case history, and indicates that consistent results are obtainable using the single-pass method. Case History III illustrates the accuracy of the meter and proving in a bidirectional application.

Case History I (Figure 5):

This proving was performed on a 1.5" Coriolis meter measuring liquid carbon dioxide on a pipeline. The operating conditions were rather extreme for this product, since a stable density was difficult to maintain. A smaller than normal prover (e.g., two gallons) was used to obtain stability more quickly, and to maintain that stability. The product density was approximately 0.427 gm/cc.

Once stability had been achieved, a good proving was obtained. This proving used a three-pass average method to get better than 0.05% repeatability over five consecutive runs.

CASE HISTORY I								
Figure 5								
Case History I								
Prover Data Temperature (°F): 107.7								
Volume:	2.12944 gal	l]	Pressure (psig): 1344.98				
	0							
Meter Dat	a			Size: 1.5"				
Base K:	180.00 P/lb		,	Temperature (°F): 107.7			
Dubern	100100 1/10			Pressure (psig): 1344.98				
Frequency	Setpoint: 24	500 Hz		4.6				
Frequency Setpoint: 2500 Hz Flowrate Setpoint: 833.33 lb/min.								
Flowrate S	etnoint 8							
Flowrate S	etpoint: 83							
Flowrate So Prover Mass	1	33.33 lb/min.	Flow Rate	Meter	Meter Net K			
	1	33.33 lb/min.		Meter Fequency Hz	Meter Net K P/lb			
Prover Mass	1	33.33 lb/min. Meter Factor	Flow Rate					
	Meter Mass	33.33 lb/min.	Flow Rate lb/min	Fequency Hz	P/lb			
Prover Mass 22.81231	Meter Mass 22.74201	33.33 lb/min. Meter Factor 1.00309	Flow Rate lb/min 352.003	Fequency Hz 1052.861	P/lb 179.45 179.42 179.44			
Prover Mass 22.81231 22.81443	Meter Mass 22.74201 22.74123	33.33 lb/min. Meter Factor 1.00309 1.00322	Flow Rate 1b/min 352.003 353.280	Fequency Hz 1052.861 1056.465	P/lb 179.45 179.42 179.44 179.42			
Prover Mass 22.81231 22.81443 22.81394	Meter Mass 22.74201 22.74123 22.74300	33.33 lb/min. Meter Factor 1.00309 1.00322 1.00312	Flow Rate lb/min 352.003 353.280 353.474	Fequency Hz 1052.861 1056.465 1057.151	P/lb 179.45 179.42 179.44			
Prover Mass 22.81231 22.81443 22.81394 22.81912 22.74675 Average:	Meter Mass 22.74201 22.74123 22.74300 22.74536 22.68354	33.33 lb/min. Meter Factor 1.00309 1.00322 1.00322 1.00312 1.00324 1.00279	Flow Rate Ib/min 352.003 353.280 353.474 351.952 352.660	Fequency Hz 1052.861 1056.465 1057.151 1052.469 1055.066	P/Ib 179.45 179.42 179.44 179.42 179.50			
Prover Mass 22.81231 22.81443 22.81394 22.81912 22.74675	Meter Mass 22.74201 22.74123 22.74300 22.74536	33.33 lb/min. Meter Factor 1.00309 1.00322 1.00312 1.00324	Flow Rate lb/min 352.003 353.280 353.474 351.952	Fequency Hz 1052.861 1056.465 1057.151 1052.469	P/lb 179.45 179.42 179.44 179.42			
Prover Mass 22.81231 22.81443 22.81394 22.81912 22.74675 Average: 22.80131	Meter Mass 22.74201 22.74123 22.74300 22.74536 22.68354	33.33 lb/min. Meter Factor 1.00309 1.00322 1.00312 1.00324 1.00279 1.00309	Flow Rate 1b/min 352.003 353.280 353.474 351.952 352.660 352.679	Fequency Hz 1052.861 1056.465 1057.151 1052.469 1055.066	P/lb 179.45 179.42 179.44 179.42 179.50 179.45			

Case History II (Figure 6):

This case history involves a truck loading rack station measuring a refined hydrocarbon product. Loading rack applications usually offer good flow and product stability, as in this situation. This proving used a fifteen-gallon prover to achieve 0.045% repeatability on a product with a density of 1.048 gm/cc.

The single-pass method was used in this proving and it demonstrates that multiple pass averaging is not always necessary, and may actually be the exception.

CASE HISTORY II								
	Figure 6					_		
	Case History II <u>Prover Data</u> Volume: 15.02207 gal				Temperature (°F): 74.0 Pressure (psig): 19.91			
	Meter Data Base K: 6	<u>a</u> 50.00 P/lb]	Size: 3" Temperature (°F): 74.0 Pressure (psig): 19.91			
	Frequency Setpoint: 5500 Hz Flowrate Setpoint: 5500 lb/min.							
	Prover Mass	Meter Mass	Meter Factor	Flow Rate lb/min	Meter Fequency Hz	Meter Net K P/lb		
	131.34136 131.34140 131.34142 131.34144 131.34147	131.32254 131.31449 131.36154 131.30050 131.32496	1.00014 1.00020 0.99985 1.00031 1.00013	1746.915 1746.949 1748.319 1747.490 1746.890	1746.70769 1746.63359 1748.62937 1746.98788 1746.71358	59.99 59.99 60.01 59.98 59.99		
	Average: 131.32481 1.00013 1747.313 1747.13400 59.99 Repeatability: 0.04599% Average Error %: -0.01							

Case History III (Figures 7 and 8):

The question often arises about the accuracy of a Coriolis meter in the reverse or a bidirectional flow situation. This case history demonstrates the results of that type of proving.

The provings were volumetric rather than mass, at the request of the operator. The data was taken at a fifteen-day interval with a 35% change in flow. The results of these tests are excellent, considering the degree of flow and direction of flow change.

The three-pass average method was employed on this proving of an LPG product at a pipeline station.

CASE HISTORY III									
Figure 7		Figure 8							
Case History III – Forward Flow Prover DataTemperature (°F): 88.7Volume:0.47721 bblPressure (psig): 1180.84			Case History III – Reverse Flow <u>Prover Data</u> Volume: 0.47721 bbl			v Temperature (°F): 91.9 Pressure (psig): 1105.57			
Meter DataSize: 3"Base K: 3600.06 P/bblTemperature (°F): 88.7Pressure (psig): 1180.84			Meter Data Base K: 3600.06 P/bbl			Size: 3" Temperature (°F): 91.9 Pressure (psig): 1105.57			
Frequency Setpoint: 1500 Hz Flowrate Setpoint: 1500 bbl.hr				Frequency Setpoint: 1500 Hz Flowrate Setpoint: 1500 bbl/hr					
Prover Meter Meter Facto Volume bbl Volume bbl	r F*low Rate Meter bbl/hr Fequency Hz	Meter Net K P/bbl		Prover Volume bbl	Meter Volume bbl	Meter Factor	Flow Rate bbl/hr	Meter Fequency Hz	Meter Net K P/bbl
1.43278 1.43271 1.00005 1.43278 1.43208 1.00049 1.43278 1.43208 1.00049 1.43278 1.43215 1.00044 1.43278 1.43212 1.00046 Average: 1.43212 1.00046	351.906 351.89360 345.924 345.76135 342.928 342.76533 339.705 339.56193 338.257 338.10595 343.744 343.61763	3599.87 3598.30 3598.29 3598.48 3598.40 3598.67		1.43276 1.43276 1.43276 1.43276 1.43276 Average:	1.43262 1.43241 1.43220 1.43284 1.43255	1.00009 1.00024 1.00039 0.99994 1.00015	532.996 532.765 532.345 532.531 534.026	532.95462 532.64645 532.14666 532.57066 533.95647	3599.72 3599.20 3598.66 3600.27 3599.53 3599.48
1.43278 1.43223 1.00039 Repeatability: 0.04398%		1.43276 Repeatab	1.43252 bility: 0.04	1.00016 499%	532.933 Average	532.85497 e Error %: -(

Conclusion

This paper has provided information derived from actual operational experiences to demonstrate that Coriolis meters can be properly proven or calibrated using small volume provers. In addition, this information should provide some insight as to the type of results that are achievable by this method and which should be attained by other methods.

References:

American Petroleum Institute, "Manual of Petroleum Measurement Standards," Chapter 4, Proving Systems, Section 3, Small Volume Provers.

Apple, Cathy, "Proving Coriolis Flow Meters," presented at the 70th International School of Hydrocarbon Measurement, Oklahoma City, Oklahoma, May 16-18, 1995.