

VM

ONE COMPLETE SOFTWARE STACK. ONE SOURCE FOR SERVER VIRTUALIZATION AND LINUX. ONE CALL FOR SUPPORT.

Virtual Infrastructure: What Is Required for the Cloud?

Adam Hawley, Director of Product Management

Oracle VM | Corporate Architecture Group

ORACLE

VM

- What's New About 'Cloud'?
- Implications for Your Virtualization Architecture
- Practical Considerations

What's Different About Cloud Computing*? It's Model and Goals

- Intersection & extension of two previous concepts:
 - "Utility Computing" (pay-as-you-go) and
 - "SaaS" (software as a service rather than binaries)
- To derive greater benefits through:
 - Far greater IT elasticity
 - Ability to both scale up and scale down
 - Increased business agility and responsiveness
 - Transference of risk
 - Increased "liquidity" in managing risk (manage dollars not servers)
 - Reduce the risk of over-provisioning (e.g. high costs)
 - Reduce the risk of under-provisioning (e.g. lost / unhappy users)

What's Different About Cloud Computing*? IT Implications

Users expect a cloud infrastructure to support:

- The illusion of <u>infinite computing resources</u> available <u>on-demand</u>
- 2. The elimination of up-front commitment by users
- **3**. The ability to pay for use of computing resources on a short-term, as-needed basis

How does this affect or drive your virtualization infrastructure implementation and operation?

Does virtualization need to be done in a different way vs. a 'traditional' enterprise architecture?

Server Virtualization Infrastructure:

'Traditional' Architecture

Traditional virtualization infrastructure:

Storage & Network: Consolidated servers with local / direct, static and inflexible connections

Resource Management: no dynamic resource management / automation

Admin / Operations Model: Traditional (sysadmins, storage admins, network react to tickets to provision VMs, storage, network...)

VM Provisioning: Traditional manual creation & deployment (e.g. no appliances)

Chargeback Model: Traditional, e.g. static, user-owned physical servers

IT Implications: What's Different about Cloud?

Again, users expect a cloud infrastructure to support*:

- The illusion of <u>infinite computing resources</u> available <u>on-</u> <u>demand</u>
 - Capacity always needs to be there through automation and proactive operations before users perceive a constraint ("infinite")
 - Users need to be able to self-serve ("on-demand")

2. The elimination of up-front commitment by users

- Fine-grained, actual usage/allocation-based chargeback rather than purchase ahead of time ("no up front commitment")
- 3. The ability to pay for use of computing resources on a shortterm, as-needed basis
 - Dynamic capacity management scale up <u>or down (</u>"short-term / no commitment")

And all of the above needs to be cost-effective

Server Virtualization Infrastructure:

'Traditional' vs. 'Cloud' Architectures

Traditional virtualization infrastructure:	Virtualization designed for 'Cloud' support
Storage & Network: Consolidated servers with local / direct, static and inflexible connections	Shared storage, flexible networking to create server pools
Resource Management: no dynamic resource management / automation	Policy automation to dynamically load-balance VMs across / between pools of resources
Admin / Operations Model: Traditional (sysadmins, storage admins, network react to tickets to provision VMs, storage, network)	Automation supports self-service provisioning of VM with Administrators pro-actively manage general pool scaling
VM Provisioning: Traditional manual creation & deployment (e.g. no appliances)	Library of virtual appliances / assemblies for rapid, low-risk VM creation & deployment
Chargeback Model: Traditional, e.g. static, user-owned physical servers	Dynamic chargeback based on actual, fine-grained resource alloc

- Storage and Networks
- Resource Management & HA
- Administration & Provisioning Model
- Chargeback Model
- Performance Considerations
- Platform Choice Considerations

- Storage and Networks
- Resource Management & HA
- Administration & Provisioning Model
- Chargeback Model
- Performance Considerations
- Platform Choice Considerations

Storage & Network Challenges

- Technical: Storage & Network scaling one of the biggest challenges. Ideally...
 - Highly- and easily scalable & not overly sensitive to latencies due to locality
 - Accessible from "anywhere", yet...highly and easily secured
 - Allows (controlled) user self-provisioning (quotas, etc.)
 - Consider trade-offs between (simplistically...) file-based ease-of-use and performance-oriented SANs
- Cultural: Automated and/or self-provisioning of compute, network, and storage resources by a single actor is "scary"
 - Doesn't fit well in traditional 'silo'd' admin models
 - But need to work in this direction to get efficiencies

Integrated Management

Virtual and Physical Resources

- Many advanced storage features can make virtualization and Cloud much more efficient
- For example:
 - Native storage services, such as LUN creation, deletion, expansion, and snapshot
 - Execute thin provisioning to minimize storage utilization
 - Leverage existing investments in storage systems
- Need to access from virtualization management
- Examples: Oracle VM Storage Connect, Citrix XenServer StorageLink™, etc.

- Storage and Networks
- Resource Management & HA
- Administration & Provisioning Model
- Chargeback Model
- Performance Considerations
- Platform Choice Considerations

Dynamic Resource Management Critical

- Cloud's economic feasibility built on highly efficient use of people and physical infrastructure:
 - Automation required at this level
- Demands maximized economies of scale
 - Multi-plexing of demand peaks & valleys across large pools
 - Consistent environment across a wider infrastructure
 - But without compromising security or performance
- Demands rapid, repeatable, predictable, yet dynamic management of resources
 - Despite many highly variable 'local' environments
- Need policy-based resource management automation

Policy-Based Resource Automation

- Distributed resource scheduling for capacity management
 - Real-time monitoring of server utilization
 - Policy-based automation to rebalance Server Pool
 - Migrate load away from heavily loaded servers
 - Automatically powering up capacity as needed
- Benefits:
 - Lower operating costs per server
 - Increase admin:server ratios dramatically
 - Improve SLAs via "instant" problem detection and remediation
 - Higher resource utilization

νм

Virtualization-Level VM HA Essential

Outside the guest / non-intrusive: Works with any workload
Quality of product implementation varies: from simple IP pings to full clusterware logic
Note: Fault Tolerance promising but needs to mature for most use cases

- Storage and Networks
- Resource Management & HA
- Administration & Provisioning Model
- Chargeback Model
- Performance Considerations
- Platform Choice Considerations

Evolving the Administration Model

- Three major changes to capitalize on Cloud
 - Evolution of traditional IT admin orientation:
 - From silo'd and reactive to process-oriented and pro-active
 - From discrete element oriented to pool oriented, e.g. server or storage "pool administrator"
 - Abstraction from workload enables focus on poollevel scalability
 - End-user self-service
 - Virtual appliances

Self-Service: Blessing or Curse?

- End-user self-service
 - From "open ticket and wait" to "do it yourself"
 - Permits more agile/responsive business
 - Aligns admin labor costs more directly with business
 - Operational scalability
- But...
 - Need to control growth: VM sprawl a big threat
 - Lot's of "zombie" VMs no longer needed/used
 - Consider "Time-bombs" and automated "garbage collection" of abandoned VMs
 - License management challenges
- However can be very powerful
 - Especially in connection with VM appliances

Virtual Appliances & Assemblies

Speed Deployments and Reduce Errors

- Appliances: Pre-configured virtual machines
 - Ready-to-run full product stack package
 - JeOS: pre-configured, small footprint, pre-tuned, pre-prepared
 - Application system disk(s) preinstalled
 - User-configurable /customizable at first boot
- Assemblies: multiple appliances
 - Multiple VMs to support composite apps
- Growing support for industry-standard OVF (Open Virtualization Format)
 - Standardized metadata about VMs (resources required, how to scale...)

Web Appliance	Meta	idata		
JEE Tier			I. I.I. di)
App 1 Applian	ce		4	4
App 2 Applian	ce			
DB Appliance	 []			

Ready-to-Run Assembly

ORACLE

VM

- Storage and Networks
- Resource Management & HA
- Administration & Provisioning Model
- Chargeback Model
- Performance Considerations
- Platform Choice Considerations

Chargeback:

Accurately Aligning Costs to User

- Can be layered on top of virtualization
 - But infrastructure must provide appropriate accounting stats: amount of resources, execution time, per VM, per user, etc.
 - Also to provision to appropriate granularity vs. charging units
- By using Clouds, users are transferring risks to IT
 - Risk of over- or under provisioning due to unexpected events or planning mistakes
 - Rates should appropriately reflect risk to encourage sensible risk management by users
- Units need to be simple, predictable, and transparent to users while clearly scaling with the benefits derived
 - User's still need to understand, budget, and forecast

VM

- Storage and Networks
- Resource Management & HA
- Administration & Provisioning Model
- Chargeback Model
- Performance Considerations
- Platform Choice Considerations

Performance: Consistency and Flexibility

- For general purpose cloud, want to have broadest support for diverse workloads
 - Can handle many different needs through "sm/med/lg" standard configs
 - Dev/test vs. production configs
 - I/O intensive vs. CPU intensive configs
- Think about locality of data to server
 - May rule out public cloud use for some
- Balance ease-of-operations vs. max.
 performance
 - File- vs. FC SANs...
 - Virtualized I/O vs. Direct I/O...
 - Shared-mem / overcommit or not
- In general, VMs very memory hungry

- Storage and Networks
- Resource Management & HA
- Administration & Provisioning Model
- Chargeback Model
- Performance Considerations
- Platform Choice Considerations

Xen Platforms Dominate Clouds Today

- Most public clouds built on Xen-based products today:
 - Important if you need interoperability, e.g. public-private migrations and/or "cloud-bursting" hybrid models
- **Economics**: Low/no license expense: faster profitability
- **Performance**: Best architecture for the broadest workloads
- **Open**: Easy to customize and integrate
- Mainstream support: Rapid, easy availability of drivers for just about anything
- Interoperable: Open interfaces and APIs plus a common codebase simplifies development efforts
- **Momentum**: Many large contributors, lots of reference sites
- Industry Initiatives: OVF, CIM, Xen Cloud Project (XCP)
- XCP aims to iron-out existing differences across various Xen product offerings to make interoperability more seamless
- VMware and others have also initiated public cloud programs

Virtualization from Oracle Today

- Oracle is the only vendor to provide an integrated "full-stack" management solution
 - Virtualization <u>and</u> enterprise workloads managed together
 - Management solution for privateand public cloud providers
- End-to-end provisioning and management of enterprise application workloads
 - GUI & APIs for bare-metal provisioning of physical servers to guest creation, deployment, & management
 - Virtual appliances with Oracle VM Templates and Oracle Assembly Builder

Oracle Enterprise Manager Grid Control

Cloud Management Roadmap

Summary

- Economics matter: fundamentally about efficiency
- Cloud drives new efficiencies via advances in modularization, scale, and automation
- Improving server:admin ratios keeps management costs down in the face of explosive VM growth
- Don't neglect the process components of change which will be difficult but necessary
- Look for virtual infrastructure that provides the foundation required for cloud computing

More Sessions: Oracle @

Sessions

Day 1 – Nov 2 3:25 – 4:10pm	Unlocking the Cloud with Enterprise Private PaaS Mohamad Afshar, Sandeep Banerjie, Chris Cassidy	Track 1
Day 1 – Nov 2 6:35 – 7:20pm	Cloud Computing Drives Real World Enterprise IT Value Rani Urbas, Director, Product Strategy	Track 1
Tues – Nov 3 4:50 – 5:35pm	Virtual Infrastructure: What Is Required for the Cloud Adam Hawley, Director, Product Management	Track 6
Weds – Nov 4 7:30 – 8:15am	Cloud Computing: Separating Hype from Reality Richard Sarwal, SVP Development	Keynote
Weds – Nov 4	The Enterprise Private Cloud – From Infrastructure to Applications	General Session

Exhibits

Day 2 – Nov 3	Oracle Private PaaS
10:00 – 12:00n, 3:00 – 5:00pm, 7:15 – 8:45pm	 Oracle Cloud Management
Day 3 – Nov 4	 Oracle in Public Clouds
10:00 – 12:00n, 2:30 – 4:30pm	

